Project

Office Building Claridenstrasse 35, Zurich, Switzerland

The new office building of the Balzan Foundation is located in the "financial district" of Zurich, not far from the lake shore and the Congress House. It stands alone, like the previous building, but is nonetheless integrated into the existing perimeter block through its placement and size.

The façade of the new building is constituted by largely horizontal elements of artificial stone and vertical metal profiles, which echo the inner load-bearing structure of concrete ceilings and steel composite columns. The horizontal elements made of polished, prefabricated concrete (artificial stone) on the insulated ceiling fronts refer to the terrazzo floors of the interior; the vertical metal profiles of various sizes and shapes clad and conceal both the loadbearing columns and the individually operable façade flaps. The profiles are rectangular or rounded in cross-section, making them interpretable not only as columns or double columns, but also as "ventilation ducts" for fresh air. The façades of the publicly accessible ground floor and the top floor, with its terraces and spaces for special uses, feature an expanded grid and bronze-coloured metal profiles. However, the façade of the fourth floor is also set apart by a double grid that structures the exterior appearance of the seven-storey building.

Visitors are welcomed by a two-storey entrance hall facing the city. In memory of the institution’s founder, terrazzo flooring and sumptuous light fixtures lend the spacious entry Italian "grandezza". The interior fit-out of the premises for the tenant, the audit and consulting firm Grant Thornton, was conceived and created in tandem with the core and shell construction. The layout of the partitions, wet rooms, built-in furnishings and in particular the custom-designed LED lighting are thus an integral part of the architecture.

The structural concept as well as the heating and ventilation of the building were geared toward reducing the thickness of the ceilings to a minimum in order to add another storey without exceeding the specified building height. On the other hand, the building was to be as ecologically sound as possible. The energy concept involves ventilation with decentralised façade units and central heat recovery, combined with a thermo active building system in the concrete ceilings, as well as the connection to an anergy grid fed with lake water and a photovoltaic system on the roof.

There is no garden in front of the building as ordinarily required in this neighbourhood, nor are there parking spaces as in the adjacent buildings. Instead, the new building features a spacious forecourt. In allusion to a garden, the ground in front is covered not only with asphalt but also with large, walkable, broken stone slabs with greened gravel joints. Two freshly planted tulip trees will complement the mighty plane trees on Dreikönigstrasse. In the south-western space between the buildings, metal planters flanking the lobby will accommodate various types of willow – from small willow bushes to a single willow towards the courtyard, which can grow into a tree.

1 The existing building was replaced because it had too little office space, little flexibility and poor energy performance due to a beautiful, but oversized stairwell. A corresponding upgrade, also with regard to the new earthquake standards, was examined and rejected by the client in the run-up to the competition. The new building of the Balzan Foundation, now with seven storeys instead of six, has been constructed on the two existing underground levels.

2 The metal profiles in every other axis are 2.60 m apart and perforated, providing rain-proof ventilation.

3 The loadbearing and bracing core, moderate spans and distances between columns all ensure slender ceilings despite the strips of sound-absorbing elements and the pipes of the thermo active building system which are embedded in them. The ceiling edges are thicker along the façades, affording additional stiffness.

4 Air intake on the office floors is decentralized through façade units concealed under the raised floors, which heat or cool the air depending on the temperature outside. The air enters the rooms through floor outlets and is extracted either via the hallways or the toilets in the core and is then fed to a central heat pump system for thermal recovery. The air intake of the façade units takes place in the weather-protected space behind the prefabricated concrete elements, whose mass diminishes fluctuations in the outside temperature. The energy concept also includes the compact design of the building volume with a minimized, efficiently insulated envelope, triple insulated glazing and automated external sun protection. The reuse of the existing underground levels also entails a reduction in the consumption of grey energy.
Credits

Project: Office Building Claridenstrasse 35, Zurich, Switzerland

Address: Claridenstrasse 35
 CH - 8002 Zurich

Spatial Programme: Office building, 7 floors above ground, 2 basement floors of the existing building, two-storey entrance hall, offices, meeting rooms, boardroom, 2 terraces, common room, underground parking with car lift

Competition: September 2014 – February 2015

Planning/ Construction: July 2015 – November 2018

Client: Internationale Balzan Stiftung

Architecture: Annette Gigon / Mike Guyer Architects, Zurich

Collaborators:
 Competition: Stefan Thommen, Daniela Schadegg, Ivana Beljan
 Planning/ Construction: Stefan Thommen, Christoph Lay (Project Manager), Lukas Taller, Cornelia Schmidt, Franziska Bächer

Construction Management/ Cost Planning: Ghisleni Partner AG, Rapperswil/ Zurich

Gross Floor Area (SIA 416): 4'062 m2

Landscape Architecture: Schmid Landschaftsarchitekten GmbH, Zurich

Structural Engineer: Dr. Lüchinger + Meyer Bauingenieure AG, Zurich

Electrical Engineer/ HVAC and Plumbing/ Heating/ Cooling/ Consultant Measurement/ Control Technology: Amstein+Walthert AG, Zurich

Building Physics/ Acoustical Engineer: BAKUS Bauphysik & Akustik GmbH, Zurich

Fire Engineer: Gruner AG, Basel/ Zurich

Facade Engineer: gkp fassadentechnik ag, Aadorf

Traffic Engineer: Enz Partner GmbH, Zurich

Photos: Roman Keller, Zurich